Query-focused Multi-Document Summarization: Combining a Topic Model with Graph-based Semi-supervised Learning

نویسندگان

  • Yanran Li
  • Sujian Li
چکیده

Graph-based learning algorithms have been shown to be an effective approach for query-focused multi-document summarization (MDS). In this paper, we extend the standard graph ranking algorithm by proposing a two-layer (i.e. sentence layer and topic layer) graph-based semi-supervised learning approach based on topic modeling techniques. Experimental results on TAC datasets show that by considering topic information, we can effectively improve the summary performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Feature-based Bayesian Model for Query Focused Multi-document Summarization

Supervised learning methods and LDA based topic model have been successfully applied in the field of multi-document summarization. In this paper, we propose a novel supervised approach that can incorporate rich sentence features into Bayesian topic models in a principled way, thus taking advantages of both topic model and feature based supervised learning methods. Experimental results on DUC200...

متن کامل

Automatic Annotation Techniques for Supervised and Semi-supervised Query-focused Summarization

In this paper, we study one semi-supervised and several supervised methods for extractive query-focused multi-document summarization. Traditional approaches to multidocument summarization are either unsupervised or supervised. The unsupervised approaches use heuristic rules to select the most important sentences, which are hard to generalize. On the other hand, huge amount of annotated data is ...

متن کامل

Query-Focused Multi-Document Summarization Using Co-Training Based Semi-Supervised Learning

This paper presents a novel approach to query-focused multi-document summarization. As a good biased summary is expected to keep a balance among query relevance, content salience and information diversity, the approach first makes use of both the content feature and the relationship feature to select a number of sentences via the cotraining based semi-supervised learning, which can identify the...

متن کامل

Feature expansion for query-focused supervised sentence ranking

We present a supervised sentence ranking approach for use in extractive summarization. Using a general machine learning technique provides great flexibility for incorporating varied new features, which we demonstrate. The system proves quite effective at query-focused multi-document summarization, both for single summaries and for series of update summaries.

متن کامل

Multi-topic Based Query-Oriented Summarization

Query-oriented summarization aims at extracting an informative summary from a document collection for a given query. It is very useful to help users grasp the main information related to a query. Existing work can be mainly classified into two categories: supervised method and unsupervised method. The former requires training examples, which makes the method limited to predefined domains. While...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014